首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3219篇
  免费   398篇
  国内免费   402篇
测绘学   525篇
大气科学   329篇
地球物理   624篇
地质学   939篇
海洋学   244篇
天文学   29篇
综合类   211篇
自然地理   1118篇
  2024年   7篇
  2023年   30篇
  2022年   113篇
  2021年   152篇
  2020年   149篇
  2019年   141篇
  2018年   137篇
  2017年   138篇
  2016年   135篇
  2015年   158篇
  2014年   181篇
  2013年   226篇
  2012年   173篇
  2011年   175篇
  2010年   164篇
  2009年   179篇
  2008年   169篇
  2007年   195篇
  2006年   208篇
  2005年   154篇
  2004年   164篇
  2003年   133篇
  2002年   123篇
  2001年   97篇
  2000年   82篇
  1999年   71篇
  1998年   60篇
  1997年   59篇
  1996年   31篇
  1995年   36篇
  1994年   41篇
  1993年   30篇
  1992年   23篇
  1991年   16篇
  1990年   17篇
  1989年   10篇
  1988年   12篇
  1987年   12篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1976年   1篇
排序方式: 共有4019条查询结果,搜索用时 96 毫秒
101.
Linear correlations between seasonal and inter-annual measures of meteorological variables and normalized difference vegetation index (NDVI) are calculated at six nearby yet distinct vegetation communities in semi-arid New Mexico, USA Monsoon season (June–September) precipitation shows considerable positive correlation with NDVI values from the contemporaneous summer, following spring, and following summer. Non-monsoon precipitation (October–May), temperature, and wind display both positive and negative correlations with NDVI values. These meteorological variables influence NDVI variability at different seasons and time lags. Thus vegetation responds to short-term climate variability in complex ways and serves as a source of memory for the climate system.  相似文献   
102.
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one.  相似文献   
103.
Anabranching is characteristic of a number of rivers in diverse environmental settings worldwide, but has only infrequently been described from bedrock-influenced rivers. A prime example of a mixed bedrock-alluvial anabranching river is provided by a 150-km long reach of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Here, the perennial Orange flows through arid terrain consisting mainly of Precambrian granites and gneisses, and the river has preferentially eroded bedrock joints, fractures and foliations to form multiple channels which divide around numerous, large (up to 15 km long and 2 km wide), stable islands formed of alluvium and/or bedrock. Significant local variations in channel-bed gradient occur along the river, which strongly control anabranching style through an influence on local sediment budgets. In relatively long (>10 km), lower gradient reaches (<0.0013) within the anabranching reach, sediment supply exceeds local transport capacity, bedrock usually only crops out in channel beds, and channels divide around alluvial islands which are formed by accretion in the lee of bedrock outcrop or at the junction with ephemeral tributaries. Riparian vegetation probably plays a key role in the survival and growth of these islands by increasing flow roughness, inducing deposition, and stabilising the sediments. Less commonly, channels may form by eroding into once-continuous island or floodplain surfaces. In shorter (<10 km), higher gradient reaches (>0.0013) within the anabranching reach, local transport capacity exceeds sediment supply, bedrock crops out extensively, and channels flow over an irregular bedrock pavement or divide around rocky islands. Channel incision into bedrock probably occurs mainly by abrasion, with the general absence of boulder bedforms suggesting that hydraulic plucking is relatively unimportant in this setting. Mixed bedrock-alluvial anabranching also occurs in a number of other rivers worldwide, and appears to be a stable and often long-lived river pattern adjusted to a number of factors commonly acting in combination: (1) jointed/fractured granitoid rock outcrop; (2) erosion-resistant banks and islands; (3) locally variable channel-bed gradients; (4) variable flow regimes.  相似文献   
104.
Erosion rates surveyed using 230 erosion pins on 24 occasions over eight years (1994–2001) on forested stream banks, tributaries and forest ditches in the 0·89 km2 Nant Tanllwyth catchment, part of the Hafren Forest on Plynlimon, mid‐Wales, showed statistically significant increases of up to 40 mm a?1 in mean erosion rates during the two‐year period in which environmentally sensitive plot‐scale timber harvesting operations took place (1996–97). In the four years following timber harvesting mean erosion rates at all sites recovered to levels that were lower than before the harvesting operations began. This is attributed to increased light levels, following canopy removal, allowing vegetation to colonize exposed banks. There was a statistically significant relationship (p < 0·05) between mean erosion rate in 2000–01 (four years after harvesting) and percentage vegetation cover at erosion monitoring sites in the clearfelled (south tributaries) area though the same relationship did not hold for sites on the mainstream banks or for sites on the north (mature forest) ditch sites. The implications of natural vegetation colonization for management of such streams are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
105.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
106.
The dynamics of vegetation‐driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within‐storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small‐grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
107.
Based on the land surface temperature (LST), the land cover classification map,vegetation coverage, and surface evapotranspiration derived from EOS-MODIS satellite data, and by the use of GIS spatial analytic technique and multivariate statistical analysis method, the urban heat island (UHI) spatial distribution of the diurnal and seasonal variabilities and its driving forces are studied in Beijing city and surrounding areas in 2001. The relationships among UHI distribution and landcover categories, topographic factor, vegetation greenness, and surface evapotranspiration are analyzed. The results indicate that: (i) The significant UHI occur in Beijing city areas in the four seasons due to high heat capacity and multi-reflection of compression building, as well as with special topographic features of its three sides surrounded by mountains,especially in the summer. The UHI spatial distribution is corresponding with the urban geometry structure profile. The LST difference is approximately 4-6℃ between Beijing city and suburb areas, comparatively is 8- 10℃ between Beijing city area and outer suburb area in northwestern regions. (ii) The UHI distribution and intensity in daytime are different from nighttime in Beijing city area, the nighttime UHI is obvious. However, in the daytime, the significant UHI mainly appears in the summer, the autumn takes second place, and the UHI in the winter and the spring seem not obvious. The surface evapotranspiration in suburb areas is larger than that in urban areas in the summer, and high latent heat exchange is evident, which leads to LST difference between city area and suburb area. (iii) The reflection of surface landcover categories is sensitive to the UHI, the correlation between vegetation greenness and UHI shows obviously negative.The scatterplot shows that there is the negative correlation between NDVI and LST (R2 = 0.6481).The results demonstrate that the vegetation greenness is an important factor for reducing the UHI,and large-scale construction of greenbelts can considerably reduce the UHI effect.  相似文献   
108.
滑坡滑面的抗剪强度指标往往用反算法确定。分析表明,对已变形位移的滑坡,其推力可不反算滑面抗剪强度指标而直接按现状稳定系数和设计安全系数简易地估算,一般地,滑坡推力等于下滑分力乘以设计安全系数相对于现状稳定系数的提高比例值。进而讨论了其对不同设计工况、各种典型形状滑面的适用条件。这是一条估算滑坡推力的捷径。  相似文献   
109.
The aim of this paper is to investigate the feasibility of using Landsat TM data to retrieve leaf area index (LAI). To get a LAI retrieval model based ground reflectance and vegetation index, detailed field data were collected in the study area of eastern China, dominated by bamboo, tea plant and greengage. Plant canopy reflectance of Landsat TM wavelength bands has been inversed using software of 6S. LAI is an important ecological parameter. In this paper, atmospheric corrected Landsat TM imagery was utilized to calculate different vegetation indices (VI), such as simple ratio vegetation index (SR), shortwave infrared modified simple ratio (MSR), and normalized difference vegetation index (NDVI). Data of 53 samples of LAI were measured by LAI-2000 (LI-COR) in the study area. LAI was modeled based on different reflectances of bands and different vegetation indices from Landsat TM and LAI samples data. There are certainly correlations between LAI and the reflectance of Tm3, TM4, TM5 and TM7. The best model through analyzing the results is LAI = 1.2097*MSR + 0.4741 using the method of regression analysis. The result shows that the correlation coefficient R2 is 0.5157, and average accuracy is 85.75%. However, whether the model of this paper is suitable for application in subtropics needs to be verified in the future.  相似文献   
110.
Predictive vegetation modeling can be used statistically to relate the distribution of vegetation across a landscape as a function of important environmental variables. Often these models are developed without considering the spatial pattern that is inherent in biogeographical data, resulting from either biotic processes or missing or misspecified environmental variables. Including spatial dependence explicitly in a predictive model can be an efficient way to improve model accuracy with the available data. In this study, model residuals were interpolated and added to model predictions, and the resulting prediction accuracies were assessed. Adding kriged residuals improved model accuracy more often than adding simulated residuals, although some alliances showed no improvement or worse accuracy when residuals were added. In general, the prediction accuracies that were not increased by adding kriged residuals were either rare in the sample or had high nonspatial model accuracy. Regression interpolation methods can be an important addition to current tools used in predictive vegetation models as they allow observations that are predicted well by environmental variables to be left alone, while adjusting over‐ and underpredicted observations based on local factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号